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Abstract. Matrix representation of the automorphism group of pure integral &tonions 
constituting the root system of E, is constructed. It is shown that it is a finite subgroup of 
the exceptional group of G2 of order 12096, called the adjoint Chevalley group G(2). Its 
four maximal subgroups of orders 435 192, 192‘ and 336 preserve. respectively, the 
octonionic root systems of,%. SO(I2), SU(2)’ x SO(8) and SU(8). It is also shown explicitly 
that the full automorphism group ofthe pure octonions *e, (i= I , .  . . , 7 )  constituting the 
roots ofSU(2)’ is a group of order 1344. Possible implications in physics are discussed. 

1. Introduction 

It is a well known phenomena that the finite subgroups of the rotation group SO(3) play 
prominent roles in ‘the molecular structures of atoms. Crystallography has important 
applications of the discrete subgroups of the rotation group adjoined by the Euclidean 
translations. Ordinary Lie groups or super Lie groups had great impact both in nuclear 
and particle physics as a classification symmetry and/or gauge symmetry. 

Simple finite groups have, for nearly a century, been a central resaerch area in 
mathematics and their classification has recently been completed [l]. They are the Lie- 
type groups, alternating groups and the 26 sporadic groups. There is no evidence as to 
their role in physics. However, it has been already noted that the finite subgroups of 
SU(2) [2], which are the double covers of the finite subgroups of the ordinary rotation 
groups, are related to the A-D-E classification of the Wess-Zumino-Witten models 
based on the corresponding affine Lie algebras 131. The SL(7 )  group of order 336, 
which is the double cover of the finite subgroup of SU(3) of order 168, has some 
relation with rational conformal field theory based on the G2 affine Lie algebra [4, 51. 
A detailed study regarding the group PSL2(7) of order 168, which is isomorphic to the 
projective modular group on the finite field with seven elements, has been extensively 
worked out by Bauer and Itzykson [5 ] .  

The automorphism group of the octonion algebra is the exceptional Lie group G2 
[6] ,  and its finite subgroups have been studied [7]. In a recent paper, it has been shown 
that a finite subgroup G2(2) (adjoint Chevalley group) of the exceptional Lie group G2 
can be realized as the automorphism group of the octonionic root system of E, [SI. 
Being a subalgebra of E8 possessing an octonionic root system which is closed under 
octonion multiplication, the E7 root system has a presentation in terms of pure integral 
octonions [9 ] .  

0305-4470/94/072429+ 14$19.50 0 1994 IOP Publishing Ltd 2429 
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In this paper we work out the seven-dimensional irreducible representation of G2(2), 
of order 12096, and find the Lie subalgebra structures of E7 corresponding to the 
maximal subgroups of G2(2). This work is an extension of an earlier paper by Karsch 
and Koca [SI and makes the topic more accessible for physicists. We organize the paper 
as follows. In section 2 we briefly discuss the construction of the Ex root system with 
octonions and give explicit roots of E7 in terms of pure octonions. We describe a method 
to obtain the seven-dimensional irreducible representation of G2(2) and specify three 
generators of the group. In section 3 we obtain the maximal subgroups of G2(2) of 
orders 436, 192, 192' and 336 preserving, respectively, the octonionic root system of 
Lie algebras E6, S0(12), SU(2)'XSO(S), and SU(8). In section 4 we discuss the full 
automorphism group of order 1344 of pure octonions of *e, (i= 1, . . . ,7) and study 
its maximal subgroups [ l l ]  (see also H S M Coxeter in [9 ] ) .  Finally, in section 5 we 
discuss our results and make remarks concerning the relations of G2(2) aud the group 
1344 with the other simple finite groups. 

2. E, root system with pure htegral octonions 

In earlier publications [IO] it was shown that the root system of F4 can be described 
with quatemionic sets A,(a =0, 1,2,3) where a, are given by 

Ao A i  A2 A3 

*I, *ei, *ez, *e3 $(ii *el) 

$(iI*e,*e2*e3) i(*e2*e3) $(*e3*ei) $(*el*e2)' ' 
(1) 

*e2) $(*I *e3)  

Here we have eej= -6, -!- ~iike, (i,j, k= 1,2,3). 

quaternions 
Following the Cayley-Dmon procedure for the construction of octonions from 

[A., AbI=&+e?Ab a,b=O,1,2,3 (2) 
where e:= -1 and ea=e7ei ,  es=e7e2, e6=e7e3, we obtain the octonionic roots of E8 as 
follows : 

Ex: [Ao,Ol, tO,Aol, [AI ,  Ail, [A2,A3l3 M3.AzI.  (3) 
This leads to the following decomposition of the roots under SU(2) x E, subalgebra: 

(4, W 2 )  E7 &/E7 Su(2) 
*I *e,, t(+e,+e~*e,*e,,,) t(*lheG*ep*eq) 

where the indices take the values 

i= l ,  . . . , 7 

jkim: 1246,1257, 1345,1367,2356,2341,4561 (5) 
npq: 123, 147, 165,245,267,346,357. 

The set of 240 integral octonions in (4) constitutes the units of integral octonions 
describing the E8 lattice. The 240 units form the non-zero roots of E8 provided multiplied 
by 3 and are closed under octonion multiplications. 

In our construction el plays a special role. In fact, octonionic roots of E8 similar to 
(3) can be obtained seven different ways, in each of which one of the octonionic units 
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z(e2-e,+ es+e6) 1 :  3(-e2+e3-4-e,) 

Figure 1. Extended Dynkin diagram of E, with pure octonionic units. 

e, ( i=  1, . . . , 7) plays a crucial role [IO]. The roots of E7 in (4) can also be obtained 
from the simple roots of E,, and the extended Dynkin diagram is given in figure 1. The 
simple roots of E, in figure 1 can be obtained by the transformation from those which 
are given in [8]: 

el -+ e5 

e2 -+ +(-e,- e3 - e4 + e7) 

e3 -+ t(e2-e3+e4+e7) 

e4-+I(-ez-e3+e4--e7) 1 

e5 -+ el 

e6 -+ -e6 

e7 -t ;( -e2+e3 + e4+e7) . 
We make this choice of simple roots in figure 1 to represent the matrices of the 

group 192 with the matrix elements +I ,  0. We will also make use of this representation 
in the construction of the group 1344. 

In order to construct the automorphism group of the pure octonions in (4) let us 
choose three roots 

from the coset space E8/E7 x SU(2) and define three 7 x 7 matrices corresponding to 
the transformations 
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Table 1. Character values of the seven-dimensional irreducible representation of U,(3)= 
G W ) .  

No. matrim 
ClaSS in a class Trace Power 

I I 7 1 
2 56 -2 3 
3 63 -1 2 
4 63 3 4 
5 63 3 4 
6 378 -1 4 
7 504 0 12 
8 504 0 12 
9 504 2 6 

10 612 1 3 
I I  756 -I  8 
12 75 6 -1 8 
13 864 0 I 
14 864 0 7 

The matrices P,(a = 1,2, 3) generate a group of order 6048 which is the simple group 
U3(3) =GL(2), called the derived Cheyalley group [12]. It has 14 conjugacy classes. The 
characters of its seven-dimensional irreducible representation are given in table 1. The 
matrices P I ,  P2, P3 belong to the same conjugacy classes of order 3 with Tr Pi= -2. In 
fact, there are 56 matrices of type (7) all belonging to the same class in G;(2). To 
minimize the number of matrices generating G@), G2(2) and their maximal subgroups, 
we give seven matrices in the appendix such that various combinations of them generate 
the groups in question. For instance, it is possible to generate Gi(2) with the matrices 
B and C given in the appendix. 

We note that the seven-dimensional irreducible representation of Gi(2) involves 
three diagonal matrices other than the unit matrix and are given by 

M ,  =(l ,  1,1, - I ,  -1, -1, -I) 

Mz=(l,  -1, -1, 1, -1, -1 ,  I) 

M3=MIM2=M2M~=(1,-1,-1,-1, 1, 1,-1)andcyclicpermutations. 

An inspection proved that the diagonal matrix M,=(-l, 1, -1, 1,  -1, 1, - I ) ,  
M:=I also preserves the octonionic roots of E7 in (4). The matrices M , , M 2 ,  M4 
generate an elementary Abelian group of order 8 where we define 

M Y = M ~ M I  M6=M4Mz MS=MdM3 

and 
MiMj=MjM,= MA (ijk=123,147, 165,246,257,354,367). (9) 

This group plays a crucial role in the analysis of the maximal subgroups of G2(2) and 
the group 1344. 

One can readily show that the generators of GS(2) and M4 satisfy the relations 

~dm-2  = B' 
M4CW1 = C 

where E, C, E', C'eGi(2). 



Automorphism groups 2433 

This proves that M4 constitutes the outer automorphism of G;(2), and G2(2) is 
obtained by adjoining M4 to the generators E, C of Gi(2). Thus, we obtain the 
seven-dimensional irreducible representation of the adjoint Chevalley group G2(2) 
of order 6048x2=12096. We note that the adjoint Chevalley group Gz is one of 
the maximal subgroups of the Weyl group of E, with index 240. Indeed, the Weyl 
group of E7 is the direct product of the Chevalley group S07(2) with the inversion 
group of order 2. Therefore, G2(2) is maximal in S07(2) with the index 120. The 
matrices of S0,(2) and G2(2) are the orthogonal matrices of determinant +1[1, 131. 
Character values of the seven-dimensional irreducible representations of Gz(2) are 
shown in table 2. 

Table X Character values of the wen-dimensional irreducible representation of 6(2) ,  

No. matrices 
Class in a class Trace Power 

I 1 
2 56 
3 
4 
5 
6 
7 
8 
9 
IO 
11 
I2 
13 

63 
252 
252 
126 
378 
504 
672 
IO08 
1008 
1008 
1512 

14 1512 
IS 1728 

7 1 
-2 3 
- I  2 
- I  2 
3 4 
3 4 

-1 ~ 4 
2 6 
I 3 
0 12 
0 12 
0 12 
I 8 

-1 8 
0 7 

16 2016 - I  6 

3. Maximal subgroups of G2(2) and the related subalgebras of E, 

The simple group Gi(2) has four maximal subgroups of orders 216 (3:+2: 8), 96(2’.S4), 
96‘(4’.S,) and 168(PSL~(7)) [l]. The notation in parentheses is the names of the groups 
and will be clarified in what follows. Double oovers of four respective groups of orders 
432, 192, 192’ and 336 preserve the root systems of E6, S0(12), SU(Z)’xSO(8) and 
SU(8). 

We discuss each case separately below. 

3.1. The group 3i1’:8:2 of order 432 and the octonionic roots of E6 

ES x U( 1) is one of the maximal Lie algebras of E7. U( I) ,  being in the Cartan subalgebra, 
is represented by the zero root. 126 non-zero roots of E1 decompose as 
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126=72+27+27*, where the 72 non-zero roots of Es are given by 

M Koca and R K05 

=%,*e3, fes, =% $(&e2 *e3 I es I e') 

&e,ie2-e4*e6) &el r te3-e4ies )  

&(el rt e2 f e5 -e7) *&eI i e, rt e6 - e7) 

iglte2ie3+ed-e7) , &e4ie5*&-e7). 

(1 1) 

The 24 roots in the top line of (1 1) correspond to the roots of the SO(8) subalgebra 
of Es. The matrices of Gi(2) which leave the set of roots in (I  I )  form a group of order 
216. This group which has 13 conjugacy classes can be generated by the matrices B 
and C given in the appendix. The notation 3ke2:8 used for the group 216 has the 
following meaning. It is the semi-direct product of two groups: one is a cyclic group 
of order 8 and the other is an extraspecial group of order 27. The structures of these 
subgroups will be discussed elsewhere [14]. The E6 root sytsem is also left invariant by 
the matrix L4, which is not an element of G;(2). The order of L4 is 2 since Lz=I. By 
taking the semi-direct product of 3y': 8 with the cyclic group of order 2 we obtain the 
group 3L+2:8:2 of order 432. We have also checked that 3:+2 is a normal subgroup 
of 3y2:8:2 of index 16. 

The Weyl group of Es is the automorphic extension of S06(2) = U4(2) = 2  A3(2) 
[ I ,  131 with the cyclic group of order 2. Here S06(2), for example, is generated by 6 x 6 
matrices over the field with two elements preserving a non-singular quadratic form 

It is interesting to note that 1 W(Es))/)3?2:8:2) = 120. We have analysed the maxi- 
mal subgroups of 432 and obtained, three different maximal subgroups, each of order 
216. In addition to the usual maximal subgroup of Gi(2) having 13 mnjugacy classes, 
we obtained the other two groups with 13 and 16 conjugacy classes. The second group 
of order 216, although possessing 13 conjugacy classes, is different from the one in 
Gi(2). 

d+ 21x2 + $. + x3q f xSx6. 

3.2. The group i?.S4:2 of order 192 and rhe root system of SU(2) x SO(12) 

The Lie algebra SU(2) x SO(12) is maximal in 6. In fact the isotropy group of the 
highest root of E7 is the Weyl group SO(12). E, roots decompose under SU(2) x SO( 12) 
roots as follows: 

SU(2): Atel 

SO(12): fez, *e3,  *e4, i e s ,  i e ~ ,  *e7 

i ( ie2 fe3 ie , fes )  

i(*ez*e3f4*e7) 

;(*e4 i e5 i e6 rt e7) 

(12) 
I 

I 

The remaining roots of E7 transform as the direct product of spinor representations 
(2,32) of SU(2) x SO(12). Here we are concerned with the transformations which 
stabilize hel .  The matrices of Gi(2) preserving (12) form a group of order 96 with 10 
conjugacy classes whose generators can be taken as the matrices A,  C whose elements 
consist of only 1 1 , O .  The other maximal subgroups of G2(2) generated by the other 
matrices also include elements *$ in addition to *I, 0. We have checked that the group 
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of order 96 possesses the permutation group Sa as a subgroup and contains an elemen- 
tary Abelian group generated by M ,  and M2 as the invariant subgroup of order 2’’ 
4. The notation 22.S4 implies this structure. Being a subgroup of Gi(2), the 2’.S4 consist- 
ing of all matrices with elements f l ,  0 involves the diagonal matrices, Mi (i= 1, 2,3). 
We note that Ma also preserves the root system in ( I  I )  so that the group can be extended 
to 2*.S4:2 of order 192 possessing 14 conjugacy classes of all matrices with i l ,  0 in 
Gz(2). These 192 matrices are of the form 7= I 1 6  so that the 6 x 6 blocks act on the 
octonionic units ej (i=2, . . . ,6) and can be further reduced to two sets of 3 x 3 matrix 
blocks. This is then a discrete subgroup of SU(3) 171. The matrices generating S4 can 
further be reduced to 7 = 1 + 3 + 3’ so that two blocks of 3 x 3 matrices acting on the 
sets (e2, ea, es) and (e3, e6, e?) which correspond to two different three-dimensional 
irreducible representations of S4. In fact, the whole group involving Sa (finite subgroup 
of SO(3)) can be reduced to 7= 1 +3+3’. Interestingly enough. 2’.S4:2 is isomorphic 
to the Weyl group of SO(8). The SO(12) roots in (11) can be regarded as thexnion 
of three SO(8), (a= 1,2,3) roots. One of the S, subgroups of 2’.S4:2 permutes these 
root systems amongst themselves. We have checked that the group of order 192 has 
three maximal subgroups of orders 96. In addition to the usual one which is involved 
in Gh(2) there are two more groups with 10 conjugacy classes. However, they are not 
isomorphic to each other. 

3.3. The group 4’:S3:2=4’:D6 (192’) of order I92 and the rool system 
SU(2)3x SO(8) 

A computer program gave two maximal groups of order 96 in Gi(2). The one with 
elements & I ,  0 which we have already discussed was obtained while searching for the 
transformations preserving the root system of SO(12). The second one was given by 
computer calculation. This group has.16 conjugacy classes, and the matrices can be 
reduced to block diagonal forms of 3 x 3 and 4 x 4 matrices where the upper 3 x 3 
matrices possess elements f l ,  0 only acting on (el ,  e2, e3) and the lower 4 x  4 matrices 
involve the additional elements 2 ~ ;  and transform the octonionic units (e4,  es ,  e6, e,) 
among themselves. The upper block of 3 x 3 matrices in fact transforms the roots of 
SU(2) x SU(2) x SU(2)  where each SU(2) is represented by one octonionic unit +ej 
(i= 1,2,3) whereas the lower 4 x 4 matrices preserve the root system of an SO(8) Lie 
algebra whose roots are the linear combination of e,s (i=4, 5,6,7).~Therefore, the 
group of order 96 with 16 conjugacy classes leaves the root system of x SO(8) 
invariant where the roots are given by 

SU(2): &el 

SU(2): %e2 

SU(2): +e3 

SO@): &e4, +es, fe6, *e, ;(*ea+ es &e6& e,) .  

(13) 

The matrices of Gk(2) which preserve this root system are generated by the matrices 
C and E. Again noting that M4 preserves the same root system, the group is easily 
extended to a group of order 192 which is maximal in G2(2) and has 17 conjugacy 
classes. The SU(2)3~S0(8)  is not a maximal subalgebra as it is involved in 
SU(2) xSO(12). However, we should emphasize that while the SU(2) in the case of 
SU(2) x SO(12) were invariant, here three SU(2) roots are permuted. Once again we 
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notice that the group 192’ involves three maximal subgroups of order 96 but with 
different structures. They have, respectively, 16, 13 and 19 conjugacy classes, and only 
the one with 16 classes is involved in Gi(2). The group of order 96 with 13 conjugacy 
classes has the structure 4’.S3 where 4’ denotes the direct product of two cyclic groups 
of order 4 and S3 is the permutation group of 3-objects. It is understood that 4’ is 
invariant in 4’.S3. An extension of this to 192’ is made by the 2-group, so the structure 
is given by 4’.& where D6 is the dihedral group of order 12. In fact, &is the automorph- 
ism group of the root system of G2. The 4‘.D6 group has many interesting subgroups 
such as the binary tetrahedral group 2 4 4  of order 24, and dihedral groups of various 
orders. With a unitary transformation 

M Koca and R KO$ 

1 
u*=-((e4-ie5) 

1 

Jz u=-(e4+ies) Jz 
1 

d* = - (e6 - ie7) 
1 

8 
d=- (e6+ie7) Jz 

the generators of 192’ can be written in the form [+I i = l , 2  

where 

1 .  1 
Q l = - ( ~ o ~ + i o ~ ) 8 - ( I f i ~ l )  Jz R I =  0 0 1 

(17) 
[: :I Js 

1 
0 -1 0 

Qz= -@(I+iol)@- (I+io3) 
Rz=[: i] Jz 

and oi (i= 1,2,3) are 2 x 2 Pauli matrices and 8 stands for the direct product of Q, 
and Qz . If all possible products of RI and R2 were allowed then we would have generated 
the direct products of two binary octahedral groups so that the order would be 48 x 48 = 
2304 instead of 192. 

We have checked that the 3 x 3~matrices R I  and Rz generate a group of order 24 
isomorphic to Sa with five conjugacy classes. This is the octahedral group where *e, 
(i= 1,2,3) denote the vertices of the octahedron. However, the lower 4 x 4 blocks of 
matrices Ql, Q2 generate a group of order 192 which unifies the two two-dimensional 
irreducible representation of D6 in the four-dimensional representation of the group 
192’. ~~ 

3.4. PSL2(7) and the roof system of SU(8) 

SU(8) is a maximal subalgebra of E7 where the E7 roots decompose under SU(8) as 

Here, 56 represents the non-zero roots of SU(8) and 70 the weights of the 70- 
dimensional representation. We are interested in the subgroup of G;(2) which preserves 

126 = 56+ 70. (18) 
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this decomposition. Octonionic roots of SU(8) are given by 

*el, fez, fed, *e6 

%;(%el fez+ es +e;)  

&iel  +esf e6 +e7) 

*$(*e, +e3&e4+es) 

*4(fe2+e3-e5fe6) 

&(fez+ e3 i ea- e?) 

&(%e4+ es & e6- 4). 

2437 

The matrices A and E of Gi(2) preserve this system and generate a group of order 
168 with six conjugacy classes (the well known finite subgroup of SU(3)). The 7 x 7 
dimensional representation is irreducible and the characters of the conjugacy classes 
are given by table 3. 

Table 3. Character values of the sewn-dimensional irreducible representation of PSLa(7). 

No. matrices 
Class in a class Trace power 

1 I 7 I 
2 24 0 7 
3 24 0 7 
4 21 - I  2 
5 42 - I  4 
6 56 I 3 

The group 168 has the maximal subgroups S4 and a group of order 21 with the 
structure 3:7. We will see that the group 21 will also play an important role in the 
construction of the group 1344 which admits another group of order 168 with eight 
conjugacy classes. We should emphasize that the group 168 which preserves the 
octonionic roots of SU(8) is the finite subgroup of SU(3)  which is isomorphic to 
P S L ( 7 )  [5, 151. Its class structure and the characters of the seven-dimensional represen- 
tation are the same as for PSL(7).  The matrix M4 also preserves the root system of 
SU(8).  Therefore, PSL2(7) can be extended to~the group PSL2(7):2 of order 336 with 
nine conjugacy classes. Hence the generators of the group 336 are A, E and M4.  This 
group is related to the conformal field theory of Gz affine Lie algebra [4, 51. 

Another interesting observation here is that the group 336 is a subgroup of the 
Weyl group of SU(S) with index 120. 

Before we conclude this section we should remark on the SU(3) x SU(6) maximal 
suhalgehra of &. The finite group which preserves the root system of SU(3) x SU(6) 
is a group of order 36 which turns out to he a subgroup of the group 436 as SU(6) 
is contained in Es.  Therefore the automorphism group of the octonionic roots of 
SU(3) x SU(6) is not a maximal subgroup of G2(2). 

4. The group 1344 as the automorphism group of pure octonionic units 

This group is unconnected with the adjoint Chevalley group although it is one of the 
maximal subgroups of the finite Lie group G2(3). We have already stated that the root 
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system of ES can be obtained in seven different ways, in each of which one of the 
octonionic unit ej (i= 1, . . . ,7) plays an important role. These seven sets of 240 integral 
octonions and 126 pure octonionic sets thereof can be obtained from (4) by cyclic 
permutations of ej( i= 1,. . . ,7). As a consequence of this we observe that among the 
seven different octonionic presentations of the E, root system only the 14 octonionic 
units &ei (i=l, . . . , 7) which are common to all suggests to us that the group 192 
which permutes only &ei can be extended to a larger group by adjoining the cyclic 
permutation of order 7. Indeed, the group turns out to be of order 192 x 7= 1344. 
However, this group is no longer the automorphism group of the octonionic roots of 
E7. However, it permutes the octonionicroots of SCI(~)~CE,, which ckm be represented 
by i e i  (i= 1, . . . ,7). Because the group 1344 permutes the roots of E7 it is a subgroup 
of the Weyl group of E7 with the index 9.240=2160. 

M Koca and R Kog 

1344 can be generated, for example, by the matrices 

G= F= 

- 0 0 0 0 0 1 0  
0 0 0 0 1 0 0  
l 0 0 0 0 0 0  
0 0 0 0 0 0 1 
0 0 0 1 0 0 0  
0 1 0 0 0 0 0  

' ~ 0 0 I 0 0 0 0  

- 0  0 0 - 1  0 0  0 
0 0 0 0 - 1 0  0 
0 0 - 1  0 0 0  0 

-1 0 0 0 0 0  0 
0 - 1  0 0 0 0  0 
0 0 0 0 0 1 0  

- 0  0 0 0 0 0 - 1  

It has 11 conjugacy classes, and the characters of the seven-dimensional irreducible 
representation are given by table 4. 

Table 4. Character values of the seven-dimensional irreducible representation of the group 
1344. 

No. matrices 
Class in a class Trace Power 

1 I 
2 7 
3 42 
4 84 
5 42 
6 168 
7 168 
8 192 
9 192 
IO 224 
I 1  224 

7 1 
- I  2 
-I 4 
- I  2 
3 4 

- I  8 
I 8 
0 7 
0 7 

-1 6 
1 3 

1344 has three maximal subgroups, two of which have order 192 and the other 
order 168. One of the subgroups of order 192 is the usual one which preserves the roots 
of SO(12) in E, and has 14 conjugacy classes. Indeed, it is the group which fixes &e,. 
The second maximal subgroup of 1344 of order 192 has 13 classes. 

The maximal subgroup of the group 1344 of order 168 has eight classes in contrast 
to PSL2(7), which only has six classes. The generators of the group 168 are given by 
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the matrices 

0 - 1 0  0 0 0 0 -  
0 0 0  0 - 1 0 0  
0 0 0  0 0 0 1  
0 0 0 - 1  0 0 0  

-1 0 0  0 0 0 0  
0 0 1  0 0 0 0  

. o  0 0  0 0 1 0 -  

- 
0 0 0 0 0 1 0  
0 0 0 0 1 0 0  
1 0 0 0 0 0 0  

H = 0 0 0 0 0 0 1  
0 0 0 1 0 0 0  
0 1 0 0 0 0 0  

~ 0 0 1 0 0 0 0  

K= 

The group 168 has the character values for the seven-dimensional irreducible rep- 
resentation given by table 5. 

Table 5. Character values of the seven-dimensional irreducible representation of the group 
168. 

No. matrices 
Class in a class TraCe Power 

1 I 7 I 
2 7 - 1  2 
3 24 0 7 
4 24 0 7 
5 28 - I  6 

I 3 
6 

6 
7 28 - I  

I 3 8 

28 

28 

A comparison of tables 3 and 5 implies that the group 168 here is not isomorphic 
to the P S L ( 7 ) .  The structure of the group 168 appears much simpler while acting on 
seven pure octonions. It can be generated by the following transformations: 

(i) a cyclic permutation of eleze4e3e6ese7 : 
(ii) fix e, and let (e2 -+ en + e6) and (e3 -+ e7 -+ es) be permuted; 

(iii) the matrix M,. 
Transformations (i) and (ii) generate a group of order 21 = 3:7.  This group has five 

conjugacy classes, and PSL2(7) also has the same group as a maximal subgroup. The 
main distinction arises in the fact that although PSL2(7) admits Sa as another maximal 
subgroup, the group 168 does not involve S, at all. Another feature is that the group 
168 admits, as an invariant subgroup, the elementary Abelian group of order 8 generated 
by the matrices M ,  , M2 and M4. 

Transformation (i) and M4 generate a maximal subgroup of the group 168 of order 
56 with eight conjugacy classes. Here the elementary Abelian group Z3 generated by 
M I ,  M2 and M4 is the normal subgroup of the group 56. Therefore the structure of 168 
is 23.7:3, which is completely different from PSLz(7), a simple group which preserves 
the octonionic roots of SC(8) in E,.  The group 1344 has many interesting smaller 
groups such as the binary tetrahedral group, S4, dicyclic groups of orders 16 and 12, 
the dihedral group of order 8 and the quaternion group. 

Another interesting group of order 1344 (which we denote by 1344') arises as the 
semi-direct product of the Abelian group, of order 8, generatd~by the matrices M I ,  M2 
and M , ~  by its automorphism group PSLz(7). To understand its structure, we will 
proceed as follows. 
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Let a permute M I , .  . . , M 7  in the cyclic order (a7=1), and p operate as 
(MI)(M2M4M6) (M3M7M5). Then a and p generate the group 21s7:3, which is iso- 
morphic to one of the maximal subgroup of PSL(7),  and the maximal subgroup of 
the group 168 with eight conjugacy classes having the structure 23.7:3. 

Now let y transform M, (i= 1, . . . ,7) as (MI)(MZM4)(M3M?)(Ms)(M~). Then a,  p 
and y (a7=p3=y2=p-'apa-2=(py)2=(ay)2= I )  generate the group PSL(7) of 
order 168 with six conjugacy classes. Indeed the seven-dimensional representation acting 
on Mi (i= I , .  . . ,7) is reducible because M j = - l  and it decomposes as 7=  l e 6  
where 1 and 6 are the irreducible representation of PSL(7). One can extend PSh(7) 
to the group 1344' by adjoining the matrices Mi. 

The group 1344' also has 11 conjugacy classes with the same character table as the 
group 1344, preserving the octonionic sets +ei(i= 1,. . . ,7). The character table of the 
seven-dimensional irreducible representation of the group 1344' is given in table 6. 

Table 6. Character values of the seven-dimensional irreducible representation of the group 
1344c. 

No. matrices 
Class in a dass Trace Power 

1 1 7 1 
2 7 -1 2 
3 42 - I  2 
4 84 -1 4 
5 42 3 2 
6 168 -1 4 
7 I68 1 4 
8 192 0 7 
9 192 
IO 224 

0 7 
- I  6 

I 1  224 1 3 

Although two groups are of the same order 1344 and have the same character values 
for the seven-dimensional irreducible representations, they are not isomorphic to each 
other. Comparing tables 4 and 6 one observes that the powers of some of the matrices 
do not match. 

It is clear from the definition of a ,  p, y that the Abelian group 23 generated by 
M I ,  iw, and M4 is an invariant subgroup of the group 1344'. We have already noticed 
that a ,  p and M ,  generated the group 168, with eight conjugacy classes, preserving the 
octonionic algebra of the set +ej (i= I ,  . . . ,7). Therefore, the new group 1344'possesses 
two maximal subgroups of order 168, one being isomorphic to PSL2(7) with six conju- 
gacy classes the other isomorphic to the group 168 with eight conjugacy classes [ I l l .  

5. Conclusion 

If octonions play any role in physics, the smallest exceptional group G,, the automorph- 
ism group of the octonion algebra, should be the relevant symmetry of the physical 
system described by the octonions. Their relevance to Es and E7 is already manifest. 
E6 as a grand unified theory or Es as a gauge symmetry of superstring theories may 
require the group structures which we have discussed so far. 
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To the best of our knowledge the seven-dimensional irreducible representation of 
the adjoint Chevalley group G2(2) constructed by the inner automorphism of the integral 
octonions has not been obtained elsewhere. The correspondence between the octonionic 
subroot systems of E7 and the maximal subgroups of Gz(2), for the first time, is made 
clear in this work. We have observed that there is a close connection between the Weyl 
groups of these Lie algebras and Gz(2) and their maximal subgroups: 

' I o o o o o o -  
0 0 0 1 0 0 0  
0 0 0 0 0 0 1  
0 0 0 0 0 1 0  B = -  
0 0 1 0 0 0 0  
0 1 0 0 0 0 0  

- 0  0 0 0 1 0 0 -  

G2(2) and the groups of order 1344 arise as maximal subgroups in various groups of 
Lie type and sporadic groups. For instance, Gi(2) is one of the maximal subgroups of 
the Hal-Janko group J2,  and the group 2'. PSL2(7) of order 1344 plays an important 
role in the constructions of various sporadic groups. These features of the automorphism 
groups of octonions may relate sporadic groups to any physics associated with the 
exceptional Lie algebras E*, E7 and their subalgebras. 

- - 
0 - 1  1 I O  0 1 
1 0  1 0 0  1 - 1  

-1 1 0  I O  1 0  
1 0 - 1  0 0  1 1 

0 1 1 - 1 0  0 1 
- 1  1 0 1 0 - 1  0 -  

(23) 
2 o o o o 2 0 0  
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- 
- 1 0  0 0 0 0 0. 

0 0  0 0 - 1  0 0 
0 0  0 0 0 - 1  0 

0 0 - 1  0 0 0 0 
0 1  0 0 0 0 0 

0 0  0 0 0 0 - 1  

- 0 0  0 - 1  0 0 OJ 

Appendix A. Matrices generating C@) and its maximal subgroups 

(24) 

A =  

c= 

- 
- 1 0 0  0 0 0 0  

0 0 1  0 0 0 0  
0 1 0  0 0 0 0  
0 0 0  0 - 1  0 0  
0 0 0  0 0 0 1  
0 0 0 - 1  0 0 0  

- 0 0 0  0 0 - 1 0  

D= 
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1 E=-  
2 

LA = 

- 0 - 2 0  0 0 0 0 
2 0 0  0 0 0 0 
0 0 2 0 0 0 0  
0 0 0 - 1  1 1 - 1  
0 0 0 -1  -1 -1 -1  
0 0 0  1 1 - 1 - 1  

. o  0 0 1 -1 1 - 1  

' - 1 0  0 0 0 0  0 
0 1  0 0 0 0  0 
0 0 - 1  0 0 0  0 
0 0  0 0 0 0 - 1  
0 0  0 0 0 1  0 
0 0  0 0 1 0  0 
0 0  0 - 1 0 0  0 

M* = 

- 1 0  0 0 , o o  0 
0 1  0 0  0 0  0 
0 0 - 1 0  0 0  0 
0 0  0 1  0 0  0 
0 0  0 0 - 1 0  0 
0 0  0 0  0 1  0 

. o o  0 0  0 0 - 1  
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